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James A. Moorer 2016 

 
Please be notified that everything in this discussion is 
completely obvious and follows directly from principles 
everyone learns in DSP 101. There is nothing new here. 
Having said that, I still consider it important to repeat this 
material from time to time, since it appears to be routinely 
overlooked. 

 
Let us start with a definition of a zero-padded short-term discrete Fourier 
transform: 
 

(1) 𝑋𝑋𝑘𝑘(𝑛𝑛) =  ∑ 𝑥𝑥(𝑛𝑛 −𝑚𝑚)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑘𝑘/𝑀𝑀𝑁𝑁−1
𝜋𝜋=0  

 
where 

n Time index 
k Frequency index, 0 ≤ 𝑘𝑘 < 𝑀𝑀 
N Number of input points per frame 
M Transform size (M≥N) 

 
Note that the sign of the exponent is positive, rather than the 
conventional negative sign used in the definition of the Fourier 
transform. This is because in this definition, the time index, m, actually 
represents previous points in time. Defining the short-term transform 
this way allows us to take an inverse FFT of 𝑋𝑋𝑘𝑘(𝑛𝑛) at any time n and get 
the samples in the usual order. I will sometimes use the term “frame” (at 
time index n) as a shorthand for the inputs points 𝑥𝑥(𝑛𝑛 − 𝑁𝑁 + 1) … 𝑥𝑥(𝑛𝑛). 
 
In this formulation, we can recover the original signal (scaled by M) 
simply by summing 𝑋𝑋𝑘𝑘(𝑛𝑛)  over all values of k for each frame. That is, it 
is not necessary to take an explicit inverse transform. I will call this the 



  

“direct sum” property1. For complex input data, we must take the 
complex conjugate of the direct sum to get an identity. 
 
Let us define the complex exponential weight factor as follows: 
 

(2) 𝑊𝑊𝑀𝑀 ≡ 𝑒𝑒2𝜋𝜋𝜋𝜋/𝑀𝑀 
 
We can then write the 1-step recursive update as follows: 
 

(3) 𝑋𝑋𝑘𝑘(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑋𝑋𝑘𝑘(𝑛𝑛 − 1)(𝑊𝑊𝑀𝑀)𝑘𝑘 − 𝑥𝑥(𝑛𝑛 − 𝑁𝑁)(𝑊𝑊𝑀𝑀)𝑘𝑘𝑁𝑁 
 
This defines a “running” transform that implements zero padding with 
(M-N) zeros. An unpadded version of relation was noted by Gold and 
Rader [GR], among others. It can be viewed as a kind of comb filter 
with a complex coefficient and state. The direct sum property 
emphasizes the interpretation of the running transform as a bank of 
bandsplitting filters [MB], since we would expect that a properly-
designed bandsplitting filter would have this property. Since we are not 
using the fast Fourier transform algorithm, there is no particular 
limitation on the choice of M and N – for instance, they might both be 
prime numbers. 
 
This transform as defined above has only a Fourier window. It is 
interesting to see if we can incorporate the application of a window 
function to the recursive implementation. 
 
We will take as a family of window functions those made by sums of 
cosines: 
 

(4) 𝑤𝑤𝑁𝑁𝑁𝑁(𝑚𝑚) = ∑ 𝑎𝑎𝑑𝑑 cos(2𝜋𝜋𝑚𝑚𝜋𝜋/𝑁𝑁)𝑁𝑁
𝑑𝑑=0  

 
This implements the common window functions, such as Hamming, 
Hanning, and Blackman. Additionally, Rife and Vincent [RV] defined 
                                                           
1 Of course, if 𝑥𝑥(𝑛𝑛) is a real signal, then we need only sum over the real part of 𝑋𝑋𝑘𝑘(𝑛𝑛) 



  

comprehensive families of windows functions using this same form with 
a variety of properties, including approximations to Chebychev 
windows. Moorer and Berger [MB] further noted that any window 
function can be implemented as a sum of sines and cosines. This is a 
direct consequence of the definition of Fourier’s sine and cosine series. 
We start assuming that only cosines are used in the definition. The 
extension to sines and cosines is then straightforward. 
 
To derive the recursive form of a short-term transform where the input 
data is windowed by (4) at each point in time, we start by examining the 
effect of applying a single cosine in the equivalent form as a sum of two 
exponentials: 
 

(5) ½(𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑/𝑁𝑁 + 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑/𝑁𝑁) 
 
We now define two separate exponential weights as follows: 
 

(6) 𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑
+ = 𝑒𝑒2𝜋𝜋𝜋𝜋�

𝑑𝑑
𝑁𝑁+

𝑘𝑘
𝑀𝑀� 

 

(7) 𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑
− = 𝑒𝑒2𝜋𝜋𝜋𝜋�−

𝑑𝑑
𝑁𝑁+

𝑘𝑘
𝑀𝑀� 

 
The recursion can now be detailed as follows: 
 

(8) 𝑋𝑋𝑘𝑘𝑑𝑑+ (𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑋𝑋𝑘𝑘𝑑𝑑+ (𝑛𝑛 − 1)(𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑
+ )𝑘𝑘 − 𝑥𝑥(𝑛𝑛 − 𝑁𝑁)(𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑

+ )𝑘𝑘𝑁𝑁 
 

(9) 𝑋𝑋𝑘𝑘𝑑𝑑− (𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑋𝑋𝑘𝑘𝑑𝑑− (𝑛𝑛 − 1)(𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑
− )𝑘𝑘 − 𝑥𝑥(𝑛𝑛 − 𝑁𝑁)(𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑

− )𝑘𝑘𝑁𝑁 
 

(10) 𝑋𝑋𝑘𝑘𝑑𝑑(𝑛𝑛) = (𝑋𝑋𝑘𝑘𝑑𝑑+ (𝑛𝑛)+𝑋𝑋𝑘𝑘𝑑𝑑− (𝑛𝑛))/2 
 
This is a recursive formulation of one term of a windowed transform 
where the window function is a weighted sum of cosines. 
 

(11) 𝑋𝑋𝑘𝑘(𝑛𝑛) = ∑ 𝑎𝑎𝑑𝑑𝑋𝑋𝑘𝑘𝜋𝜋(𝑛𝑛)𝑁𝑁
𝑑𝑑=0  

 



  

The extension to the use of both sines and cosines is straightforward. We 
can express the most general definition of a window function as follows: 
 

(12) 𝑤𝑤𝑁𝑁𝑁𝑁(𝑚𝑚) ≡ ∑ 𝑎𝑎𝑑𝑑 cos �2𝜋𝜋𝜋𝜋𝑑𝑑
𝑁𝑁

� + ∑ 𝑏𝑏𝑑𝑑 sin(2𝜋𝜋𝜋𝜋𝑑𝑑
𝑁𝑁

)𝑁𝑁
𝑑𝑑=0

𝑁𝑁
𝑑𝑑=0  

 
The revised version of equation (11) can then be expressed this way: 
 

(13) 𝑋𝑋𝑘𝑘(𝑛𝑛) = 1/2∑ (𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑑𝑑)𝑋𝑋𝑘𝑘𝜋𝜋+ (𝑛𝑛)+(𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑑𝑑)𝑋𝑋𝑘𝑘𝜋𝜋
− (𝑛𝑛)𝑁𝑁

𝑑𝑑=0  
 
This is sufficient to generalize the window function to realize any 
desired function, symmetric or otherwise. 
 
Now let us take the case where the transform size is an integral multiple 
of the number of non-zero input points. 
 

(14) 𝑀𝑀 ≡ 𝛼𝛼𝑁𝑁 where α is an integer 
 
The weight functions then become these: 
 

(15) 𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑
+ = 𝑒𝑒2𝜋𝜋𝜋𝜋�

𝛼𝛼𝑑𝑑+𝑘𝑘
𝑀𝑀 � 

 

(16) 𝑊𝑊𝑁𝑁𝑀𝑀𝑑𝑑
− = 𝑒𝑒2𝜋𝜋𝜋𝜋�

−𝛼𝛼𝑑𝑑+𝑘𝑘
𝑀𝑀 � 

 
We will recognize (8) and (9) as being the same as (3), shifted by α 
channels. Thus, when (14) holds, we do not need to run separate 
recursions as described by (8) and (9), but can simply use the iteration of 
(3) and take channels separated by α. 
 
Note what this is telling us. We can implement any window function 
consisting of a sum of cosines by weighted sums of frequency channels 
separated by α. When M is not an integral multiple of N, implementation 
of a (time) window function in the frequency domain is not simple. 
 



  

The equations of (15) and (16) comprise a well-known result in the case 
when M=N. That is, a multiplication in the time domain may be replaced 
by a convolution in the frequency domain. The common Hamming and 
Hanning windows can be implemented by 3-point sums across the 
frequency bands. It is generally not done this way because it is more 
efficient to apply the window in the time domain. In the case of a 
running transform, there can be advantages to applying the window in 
the frequency domain. This property of cosine-based windows was 
noted as well in [JAM1]. 
 
As previously noted, Gold and Rader [GR] described what they termed 
“frequency-sampling filtering” which can be derived as a specialization 
of equation (1). They did not extend it to zero-padded transforms. Their 
implementation involved a single real comb filter followed by a bank of 
real-valued resonators. Ours uses a bank of M complex comb filters so 
that we get complex channel outputs thus providing both amplitude and 
phase information directly. It is straightforward to specialize our 
formulation to that of [GR] by eliminating padding and ignoring the 
imaginary portion of the transform data. 
 
Running Transform is a (Complex) Linear Filter 
 
We can view equation (1) as M complex linear filters. It is instructive to 
calculate the response to a pure sinusoid by starting with a signal that is 
a complex exponential: 
 

(17) 𝑥𝑥(𝑛𝑛) = 𝑒𝑒𝜋𝜋𝑗𝑗𝑗𝑗 
 
The response can be written as follows: 
 

(18) 𝑋𝑋𝑘𝑘(𝑛𝑛) = 𝑒𝑒𝜋𝜋𝑗𝑗𝑗𝑗 �1−𝑒𝑒
𝑗𝑗(2𝜋𝜋𝑘𝑘𝛼𝛼−𝑁𝑁𝑁𝑁)

1−𝑒𝑒𝑗𝑗(2𝜋𝜋𝑘𝑘𝑀𝑀−𝑁𝑁)
� 

 



  

The input sinusoid will be scaled by a complex transfer gain that 
depends on M, N, k, and θ. This differs from the usual formula by the 
inclusion of zero-padding. 
 
Time-Shifting a Running Transform 
 
Note that equation (1) is defined with the data as the last N points in an 
M-point analysis window. We may want to locate the data anywhere in 
the window. Let us define σ as the desired sample offset such that 0 ≤
σ < 𝑀𝑀 −𝑁𝑁. We can rewrite equation (1) as follows: 
 

(19) 𝑋𝑋�𝑘𝑘(𝑛𝑛) =  ∑ 𝑥𝑥(𝑛𝑛 −𝑚𝑚)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑘𝑘/𝑀𝑀𝑁𝑁−σ−1
𝜋𝜋=−σ  

 
It follows then that the relation between equations (19) and (1) is as 
follows: 
 

(20) 𝑋𝑋�𝑘𝑘(𝑛𝑛) =  𝑒𝑒−2𝜋𝜋σj𝑘𝑘/𝑀𝑀𝑋𝑋𝑘𝑘(𝑛𝑛) = (𝑊𝑊𝑀𝑀)−𝜎𝜎𝑘𝑘𝑋𝑋𝑘𝑘(𝑛𝑛) 
 
We can then center the data in the analysis window by setting σ to (𝑀𝑀 −
𝑁𝑁)/2. We can window the data, if needed, using equations (15) and 
(16), but this constrains the choice of M and N. We must set α in 
equation (14) to an odd integer to apply a window. 
 
Note that equation (20) can be used to shift the data to any position in 
the window. For example, we can center the data around zero by setting 
σ to M/2. Additionally, we can incorporate shifting directly into the 
recursion of equation (3) as follows: 
 

(21) 𝑋𝑋�𝑘𝑘(𝑛𝑛) =  𝑋𝑋�𝑘𝑘(𝑛𝑛 − 1)(𝑊𝑊𝑀𝑀)𝑘𝑘 
+(𝑊𝑊𝑀𝑀)−𝜎𝜎𝑘𝑘(𝑥𝑥(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 − 𝑁𝑁)(𝑊𝑊𝑀𝑀)𝑘𝑘𝑁𝑁) 

 
This iteration yields a shifted running transform. It does preserve the 
direct sum property. The direct sum selects the sample that was 
originally at 𝑚𝑚 = σ. 



  

 

Frequency Offset in a Running Transform 

Gold and Rader note that the transform can be shifted by ½ bin by 
changing the sign of the comb filter in their implementation. We can 
define a shifted transform as follows: 

(22) 𝑋𝑋�𝑘𝑘(𝑛𝑛) =  ∑ 𝑥𝑥(𝑛𝑛 −𝑚𝑚)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋(𝑘𝑘+𝛽𝛽) 𝑀𝑀⁄𝑁𝑁−1
𝜋𝜋=0  

 
We set 𝛽𝛽 = 1/2 to get the case described by Gold and Rader. This can 
be computed with the following recursion formula: 
 

(23) 𝑋𝑋�𝑘𝑘(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑋𝑋�𝑘𝑘(𝑛𝑛 − 1)(𝑊𝑊𝑀𝑀)𝑘𝑘+𝛽𝛽 − 𝑥𝑥(𝑛𝑛 − 𝑁𝑁)(𝑊𝑊𝑀𝑀)𝑁𝑁(𝑘𝑘+𝛽𝛽) 
 
Curiously enough, the direct sum property is preserved for any value of 
𝛽𝛽. Note that if 𝛽𝛽 is not either 0 or ½, then we lose the convenient 
property that the real and imaginary parts of the transform of a real 
sequence are even and odd, respectively. 
 
Filtering a Running Transform 
 
The direct sum yields the sample at m=0, where m is defined in equation 
(1). We can shift the transform to place any sample at m=0, and thus we 
can cause any sample to be produced by the direct sum. If we shift the 
midpoint of the data to zero, then we can multiply the transform by the 
transform of any FIR filter of length less than N. Application of such a 
filter will allow us to use the direct sum to produce the output point – no 
explicit inverse transform is necessary. This is especially interesting for 
time-varying filters, where each point in time may have a different filter. 
We have shown that the only requirement is that the impulse response of 
the filter be N points or less in length and the direct sum will be exactly 
the convolution of the input signal with that filter. 
 
We might point out that the usual rules of FIR filter design apply here. 
That is, we may want to window the impulse response of the desired 



  

filter to eliminate discontinuities at the edges that might excite Gibbs 
phenomenon ripples in the frequency response. This windowing can be 
applied as a convolution in the frequency domain [MB]. This basic 
principle is well-known, but it is generally not mentioned in the 
discussion of frequency-sampling filters or running transforms 
generally. 
 
For instance, Gold and Rader designed their bandpass filter by manually 
adjusting the edge coefficient. We can design a very similar bandpass 
filter by starting with five adjacent channels of unity gain, then applying 
a Hamming window. This produces the gains (0.23, 0.77, 1, 1, 1, 0.77,    
0.23), as opposed to the gains reported by Gold and Rader (0.221,  
0.707, 1, 1, 1, 0 .707,  0.221). Figure 1 shows a comparison of these two 
designs plus one derived by using the Blackman window. 
 

 
 

Figure 1 – Comparison of frequency-sampling filters. Blue 
is original Gold and Rader [GR] design. Red is design using 
Hamming window. Green is using Blackman window. 

 
This example is a linear-phase filter. It need not be. By use of the time 
shift, we can realize filters with other phase properties, such as minimum 
or maximum phase filters. 
 



  

Gold and Rader’s definition of frequency-sampling filter is based on an 
unpadded frequency analysis (M=N). When using a padded transform, 
the application of the window function to a prototype or ideal frequency 
response must take this into account, as implied by equations (15) and 
(16). 
 
Note also that any frequency offset as defined in equation (22) must be 
taken into account when designing the filter in the frequency domain. 
 
An interesting result of this formulation is that if we product the output 
by direct sum, time-aliasing is not possible by construction. Note that 
this is independent of padding and is true whether padding is used or 
not. Equivalently, any time-aliasing is necessarily already baked-in to 
the filter by the choice of frequency weights. This is really a discussion 
about filter design. As noted above, we will surely want to taper the 
edges of the bands in some smooth manner so as to reduce the 
discontinuities at the edges of the N-point analysis window. 
 
Combining Channels 
 
It is worth repeating some comments in [MB] relating to combining 
channels. It follows immediately from the direct sum property that we 
can make any desired grouping (weighted sums) of the channels as long 
as we respect the direct sum property (that is, the sum of the gains for 
each channel across all groups should be unity. Channel gains are 
otherwise unconstrained – they may be negative or even complex). For 
example, we may wish to combine the channels into a perceptually-
relevant grouping, such as a Bark or ERB scale [JOS]. Of course, it is 
not limited to just simply summing down to, say, 24 or 26 discrete bands 
– we might wish to use overlapping, redundant bands with 4, 5 or more 
overlays, each of width of 1 Bark at the center frequency. Some window 
functions, such as the Hanning window, can be used to reduce edge 
effects without disturbing the direct sum property. We might wish to do 
this kind of redundant overlapping to better mimic the kind of frequency 
analysis done in the inner ear. 



  

 
Similarly, we may want to group these channels into constant-Q groups 
at any desired number of divisions per octave. Again, window functions 
may be used to taper the band edges seamlessly. Please note one 
interpretation of this result – A constant-Q transform may be 
implemented by a Discrete Fourier transform, either of fixed frame or as 
a “running” transform. Note also that this definition of a constant-Q 
transform is, by construction, an identity. We may start with the direct 
sum property and work backwards to a set of channel group coefficients 
that preserve this property, and thus implement an identity. With many 
kinds of processing, it is of some comfort to start with a transform that is 
guaranteed to be an identity (in the absence of modification). 
 
These groupings may be used to direct either filtering or analysis in any 
desired way. Note that any grouping of these channels will be complex, 
yielding both amplitude and phase (or, equivalently, I-Q quadrature 
components). In the case of real data, the imaginary portion may be 
either retained or ignored, depending on whether phase information is 
important. 
 
One issue with combining channels this way is that the band edge 
frequencies, center frequencies, and band widths are quantized by N. In 
this case we can pad the transform by M-N zeros. We can increase the 
number of channels by the factor of α (equation (14)). These additional 
channels will be redundant, but they can be used to reduce the band 
grouping quantization to any desired level. Increasing the number of 
channels by increasing M does not, by itself, increase the selectivity of 
the windowing function, but it does increase the accuracy of the band 
edge frequencies, center frequencies, and band widths. 
 
Integer and Half-Integer Transforms 
 
There is an interesting consequence of the frequency shifting described 
by equations (22) and (23). This consequence is not noted in most 
discussions of frequency-sampling filters. In designing a frequency-



  

sampling filter, one may freely intermix channels from any value of 𝛽𝛽. 
Of course, if the result is to be, say, a bank of bandsplitting filters that 
should sum to unity, then all the channel gains for any particular value 
of β must also sum to unity (or negative unity). This gives us another 
degree of freedom in adjusting the filters produced by grouping 
(weighted summing) channels together. For instance, to produce 
constant-Q filters, we can increase the precision of the band edges by 
increasing M, or by adding in channels with 𝛽𝛽 = 1/22

P. Note that these 
two methods of increasing the precision of the band edges are not 
directly interchangeable – there is a fundamental difference. With 𝛽𝛽 =
0, the channels are centered on half-integer values of k. With 𝛽𝛽 = 1/2, 
the channels are centered on integer values of k. A sinusoid that is 
exactly between two adjacent channels with 𝛽𝛽 = 0 will still be exactly 
between two adjacent channels for any integer multiple of M, but will be 
centered in a channel with 𝛽𝛽 = 1/2. This may make a difference in 
some cases. 
 
Figure 2 shows the result of combining adjacent channels from integer 
and half-integer transforms, showing that the result is a peak between 
the two adjacent peaks at a somewhat lower amplitude. 
 

 

                                                           
2 I do not claim this as an original observation. I’m sure it has been noted elsewhere – I just haven’t found it. 



  

Figure 2 – Comparison of frequency response of a channel 
with 𝛽𝛽 = 0 (blue), a channel with 𝛽𝛽 = 1/2 (red), and the 
sum of the two (green). 

 
There is “crosstalk” between channels of integer and half-integer 
transforms, so designing a filter with both integer and half-integer 
elements would have to take this into account to get a specific transfer 
function. 
 
There are a number of observations about half-integer transforms that 
should be kept in mind. First, half-integer filtering is not zero-phase. It 
introduces a ½-sample time-shift in the signal. Next, integer and half-
integer channel responses show an exchange of zeros and extrema – that 
is, the zeros of one occur at the extrema of the other. This can be used to 
eliminate zeros in the frequency response of a filter. Figure 3 shows an 
unmodified channel filter and a sum of that half-integer filter minus ½ of 
the two adjacent integer filters. Note that the response is very smooth 
and without zeros. There doesn’t seem to be another way to accomplish 
this except by summing many channels with nonzero coefficients. 
 

 
Figure 3 – Comparison of the unmodified magnitude 
response of a half-integer channel filter (red) and a 
combination of this channel filter minus ½ of the adjacent 
integer channel filters. 

 
 



  

 
About Audio Applications 
 
As noted in [MB], the running transform can be used to make a graphic 
equalizer that has some properties not always found in such devices:  
 

• Setting the gain of all the bands to the same boost/cut amount 
produces a flat frequency response. Traditional designs show 
ripple at any value of boost/cut different from zero. 

• Once the iteration of (3) is done, the channels can be grouped in 
any manner – we are not limited to a fixed number of groups. The 
grouping of the channels can even be time-varying. 

• The individual groups do not need to resemble second-order 
resonances – they can be bandpass filters, overlapping filters, 
mirror filters, harmonically-related filters, or any desired shape, as 
long as the direct sum property is preserved. 

• As noted above, the band spacing can be constant-Q, constant-
Bark, or any other grouping. 

 

In [MB], we also noted that signal enhancement such as noise reduction 
can be implemented by applying dynamics processing to each channel 
group. This implementation, using equation (3), has some advantages 
over the block-based formulation generally in use – the time resolution 
is at the sampling rate. For instance, there is no “anticipation” of a gain 
change such as is inherent in block-based processing. The channel gain 
algorithm can be set to fast-attack down to single sample resolution 
(there are other reasons why this might not generally be a good idea, but 
it is, at least, possible by use of a running transform). 

 

About Compute Requirements 

Some people will surely complain about the amount of compute power 
involved in the above iterations. For this, I have two answers. First, the 



  

amount of compute power required is trivial when run on a modern 
GPU. Many channels of running transforms can easily be computed in 
real time, even with large amounts of padding. Next, every time I have 
been appalled by the amount of compute time a particular technique 
takes, a few years later I am running multiple channels of it in real time. 
Nothing demonstrates this more clearly than some of my experiments 
with concert-hall reverberation simulation [JAM2, JAM3]. A 
calculation that took 10 hours of computer time per second of monaural 
audio in 1977 ran two channels in real time in 2000. I am now running 
more than 20 channels of the same algorithm in real time on a pad 
computer. As the compute power becomes available, it seems important 
to have some algorithms in the portfolio ready to take advantage of new 
platforms as they arise. 

I might note, however, that the real problem with implementing running 
transforms is where to put the resulting data. It explodes the amount of 
data by a factor of M. It is suitable for real-time processing where we 
can discard the data after use, but storing the transform data will remain 
problematic for some time. 
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